Retrieval techniques for airborne imaging of methane concentrations using high spatial and moderate spectral resolution: application to AVIRIS
نویسندگان
چکیده
Two quantitative retrieval techniques were evaluated to estimate methane (CH4) enhancement in concentrated plumes using high spatial and moderate spectral resolution data from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS). An iterative maximum a posteriori differential optical absorption spectroscopy (IMAP-DOAS) algorithm performed well for an ocean scene containing natural CH4 emissions from the Coal Oil Point (COP) seep field near Santa Barbara, California. IMAP-DOAS retrieval precision errors are expected to equal between 0.31 to 0.61 ppm CH4 over the lowest atmospheric layer (height up to 1.04 km), corresponding to about a 30 to 60 ppm error for a 10 m thick plume. However, IMAP-DOAS results for a terrestrial scene were adversely influenced by the underlying land cover. A hybrid approach using singular value decomposition (SVD) was particularly effective for terrestrial surfaces because it could better account for spectral variability in surface reflectance. Using this approach, a CH4 plume was observed extending 0.1 km downwind of two hydrocarbon storage tanks at the Inglewood Oil Field in Los Angeles, California (USA) with a maximum near surface enhancement of 8.45 ppm above background. At COP, the distinct plume had a maximum enhancement of 2.85 ppm CH4 above background, and extended more than 1 km downwind of known seep locations. A sensitivity analysis also indicates CH4 sensitivity should be more than doubled for the next generation AVIRIS sensor (AVIRISng) due to improved spectral resolution and sampling. AVIRIS-like sensors offer the potential to better constrain emissions on local and regional scales, including sources of increasing concern like industrial point source emissions and fugitive CH4 from the oil and gas industry.
منابع مشابه
Challenges in Methane Column Retrievals from AVIRIS-NG Imagery over Spectrally Cluttered Surfaces: A Sensitivity Analysis
A comparison between efforts to detect methane anomalies by a simple band ratio approach from the Airborne Visual Infrared Imaging Spectrometer-Classic (AVIRIS-C) data for the Kern Front oil field, Central California, and the Coal Oil Point marine hydrocarbon seep field, offshore southern California, was conducted. The detection succeeded for the marine source and failed for the terrestrial sou...
متن کاملComparative Evaluation of Image Fusion Methods for Hyperspectral and Panchromatic Data Fusion in Agricultural and Urban Areas
Nowadays remote sensing plays a key role in the field of earth science studies due to some of the advantages, including data collection at a very low cost and time on a very large scale. Meanwhile, using hyperspectral data is of great importance due to the high spectral resolution. Because of some limitations, such as hyperspectral imaging technology, it suffers from a reduction in the spatial ...
متن کاملMineral Mapping Using Simulated Worldview-3 Short-Wave-Infrared Imagery
WorldView commercial imaging satellites comprise a constellation developed by DigitalGlobe Inc. (Longmont, CO, USA). Worldview-3 (WV-3), currently planned for launch in 2014, will have 8 spectral bands in the Visible and Near-Infrared (VNIR), and an additional 8 bands in the Short-Wave-Infrared (SWIR); the approximately 1.0–2.5 μm spectral range. WV-3 will be the first commercial system with bo...
متن کاملLand Cover Subpixel Change Detection using Hyperspectral Images Based on Spectral Unmixing and Post-processing
The earth is continually being influenced by some actions such as flood, tornado and human artificial activities. This process causes the changes in land cover type. Thus, for optimal management of the use of resources, it is necessary to be aware of these changes. Today’s remote sensing plays key role in geology and environmental monitoring by its high resolution, wide covering and low cost...
متن کاملUse of Low Altitude Aviris Data for Identifying Salt Affected Soil Surfaces in Western Fresno County, California
This is a report on a limited evaluation of the low altitude Airborne Visible and Infrared Imaging Spectrometer (AVIRIS) data, for identifying soil salinity and organic matter concentrations in soils using specific spectral bands cited in the literature. This study is part of a larger investigation for using AVIRIS as the image data layer in developing terrain models to simulate the content and...
متن کامل